Nano Archive

Formation of Highly Ordered Nanostructures by Drying Micrometer Colloidal Droplets

Gradon, Leon and Janeczko, Stanislaw and Iskandar, Ferry and Okuyama, Kikuo (2010) Formation of Highly Ordered Nanostructures by Drying Micrometer Colloidal Droplets. ACS NANO , 4 (8). ISSN 1936-0851

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.


Nanoparticles with well-defined chemical compositions can act as building blocks for the construction of functional structures, such as highly ordered aggregates, as well as porous and hollow aggregates. In this work, a spray-drying technique is used to form a crystal-like structure with nanoparticle building blocks. When spray-drying uniform spherical particles, tightly packed aggregates with either simple or broken symmetries (quasicrystalline) were formed. Using polystyrene (PS) particles with varied zeta potentials as templates, it is also possible to form highly ordered porous and hollow aggregates from inorganic colloidal particles. Essential to the production of quasicrystalline structures is the use of monodisperse colloidal particles in spray drying, as the quasicrystalline form is not achievable when two different sizes of colloidal particles are used in the precursor suspension. With varying colloidal particles sizes, smaller colloidal particles fill the spaces formed between the larger particles, resulting in adjustment of colloidal crystallization. A geometric model that considers the tight packing of several spheres into frustrated clusters (quasicrystal form) with short-range icosahedral symmetry is compared to experimentally produced structures and found to quantitatively explain experimental observations.

Item Type:Article
Subjects:Material Science > Nanostructured materials
ID Code:9741
Deposited By:CSMNT
Deposited On:26 Oct 2010 13:53
Last Modified:26 Oct 2010 13:53

Repository Staff Only: item control page