Nano Archive

Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles

Gyergyek SaÅ¡oand Makovec, Darko and Kodre, Alojz and ArÄ?on, Iztok and JagodiÄ?, Marko and Drofenik, Miha (2010) Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles. Journal of Nanoparticle Research, 12 (4). pp. 1263-1273.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL:


The Co-ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (˜CoFe2O4) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (˜Co0.6Fe2.4O4). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe2O4, the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles- composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic properties are strongly affected by the synthesis method used.

Item Type:Article
ID Code:9146
Deposited By:Prof. Alexey Ivanov
Deposited On:13 May 2010 12:54
Last Modified:13 May 2010 13:19

Repository Staff Only: item control page