Nano Archive

Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons

Bets, Ksenia V. and Yakobson, Boris I. (2009) Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Research, 2 (2). pp. 161-166. ISSN 1998-0124 (Print) 1998-0000 (Online)


Official URL:


In pristine graphene ribbons, disruption of the aromatic bond network results in depopulation of covalent orbitals and tends to elongate the edge, with an effective force of fe ∼ 2 eV/Å (larger for armchair edges than for zigzag edges, according to calculations). This force can have quite striking macroscopic manifestations in the case of narrow ribbons, as it favors their spontaneous twisting, resulting in the parallel edges forming a double helix, resembling DNA, with a pitch t of about 15–20 lattice parameters. Through atomistic simulations, we investigate how the torsion τ ∼ 1/λt decreases with the width of the ribbon, and observe its bifurcation: the twist of wider ribbons abruptly vanishes and instead the corrugation localizes near the edges. The length-scale (λe) of the emerging sinusoidal “frill” at the edge is fully determined by the intrinsic parameters of graphene, namely its bending stiffness D=1.5 eV and the edge force fe with λe ∼D/fe. Analysis reveals other warping configurations and suggests their sensitivity to the chemical passivation of the edges, leading to possible applications in sensors.

Item Type:Article
Subjects:Physical Science > Nanophysics
Physical Science > Nano objects
Material Science > Nanochemistry
Material Science > Nanostructured materials
Divisions:Faculty of Engineering, Science and Mathematics > School of Physics
Faculty of Engineering, Science and Mathematics > School of Chemistry
ID Code:8385
Deposited By:JNCASR
Deposited On:16 Apr 2010 05:44
Last Modified:16 Apr 2010 05:44

Repository Staff Only: item control page