Nano Archive

Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties

Lim, Byungkwon and Jiang, Majiong and Yu, Taekyung and Camargo, Pedro H. C. and Xia, Younan (2008) Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Research, 3 (2). pp. 69-80.

[img]
Preview
PDF
3004Kb

Official URL: http://www.springerlink.com/

Abstract

In a seed-mediated synthesis, nanocrystal growth is often described by assuming the absence of homogeneous nucleation in the solution. Here we provide new insights into the nucleation and growth mechanisms underlying the formation of bimetallic nanodendrites that are characterized by a dense array of Pt branches anchored to a Pd nanocrystal core. These nanostructures can be easily prepared by a one-step, seeded growth method that involves the reduction of K2PtCl4 by L-ascorbic acid in the presence of 9-nm truncated octahedral Pd seeds in an aqueous solution. Transmission electron microscopy (TEM) and high-resolution TEM analyses revealed that both homogeneous and heterogeneous nucleation of Pt occurred at the very early stages of the synthesis and the Pt branches grew through oriented attachment of small Pt particles that had been formed via homogeneous nucleation. These new findings contradict the generally accepted mechanism for seeded growth that only involves heterogeneous nucleation and simple growth via atomic addition. We have also investigated the electrocatalytic properties of the Pd-Pt nanodendrites for the oxygen reduction and formic acid oxidation reactions by conducting a comparative study with foam-like Pt nanostructures prepared in the absence of Pd seeds under otherwise identical conditions.

Item Type:Article
Subjects:Physical Science > Nanophysics
Physical Science > Nano objects
Material Science > Nanochemistry
Material Science > Nanostructured materials
Divisions:Faculty of Engineering, Science and Mathematics > School of Physics
Faculty of Engineering, Science and Mathematics > School of Chemistry
ID Code:8349
Deposited By:JNCASR
Deposited On:21 May 2010 11:10
Last Modified:21 May 2010 11:10

Repository Staff Only: item control page