Nano Archive

A physiologically realistic in vitro model of microvascular networks

Rosano, Jenna M. and Tousi, Nazanin and Scott, Robert C. and Krynska, Barbara and Rizzo, Victor and Prabhakarpandian, Balabhaskar and Pant, Kapil and Sundaram, Shivshankar and Kiani, Mohammad F. (2009) A physiologically realistic in vitro model of microvascular networks. Biomedical Microdevices, 11 (5). pp. 1051-1057.



Existing microfluidic devices, e.g. parallel plate flow chambers, do not accurately depict the geometry of microvascular networks in vivo. We have developed a synthetic microvascular network (SMN) on a polydimethalsiloxane (PDMS) chip that can serve as an in vitro model of the bifurcations, tortuosities, and cross-sectional changes found in microvascular networks in vivo. Microvascular networks from a cremaster muscle were mapped using a modified Geographical Information System, and then used to manufacture the SMNs on a PDMS chip. The networks were cultured with bovine aortic endothelial cells (BAEC), which reached confluency 3-4 days after seeding. Propidium iodide staining indicated viable and healthy cells showing normal behavior in these networks. Anti-ICAM-1 conjugated 2-μm microspheres adhered to BAEC cells activated with TNF-α in significantly larger numbers compared to control IgG conjugated microspheres. This preferential adhesion suggests that cultured cells retain an intact cytokine response in the SMN. This microfluidic system can provide novel insight into characterization of drug delivery particles and dynamic flow conditions in microvascular networks.

Item Type:Article
Subjects:Biomedical Science > Nanobiotechnology
ID Code:7987
Deposited By:CSMNT
Deposited On:11 Aug 2010 15:38
Last Modified:19 Aug 2010 11:55

Repository Staff Only: item control page