Nano Archive

Conductance gaps in graphene ribbons designed by molecular aggregations

Rosales, L and Pacheco, M and Barticevic, Z and Latgé, A and Orellana, P A (2009) Conductance gaps in graphene ribbons designed by molecular aggregations. Nanotechnology, 20 (9). 095705. ISSN 09574484

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://dx.doi.org/10.1088/0957-4484/20/9/095705

Abstract

The transport properties of graphene nanoribbons with linear benzene-based molecules pinned at the ribbon edges are studied. The systems are described by a single π-band tight-binding Hamiltonian and by using the Green functions formalism based on real-space renormalization techniques. Different configurations have been considered, such as two and three attached molecules separated by a variable distance d, and the case of a finite array of molecules attached to the ribbon in different geometries (one-side and alternated sequence). In the latter case the conductance behavior is compared with the case of a molecular superlattice-like structure. In these hybrid systems of ribbons with a large number of regular attached foreign structures, we have shown the formation of well-defined energy gaps for which the conductance is completely suppressed. These gaps can be tuned by varying the number, relative distance, and length of the attached molecules. An analysis is performed to understand the nature of the conductance gap and its relation with the foreign molecular structures, providing a mechanism to delineate novel molecular sensors.

Item Type:Article
Subjects:Physical Science > Nano objects
Physical Science > Nanoelectronics
ID Code:7782
Deposited By:M T V
Deposited On:23 Nov 2009 13:21
Last Modified:23 Nov 2009 13:21

Repository Staff Only: item control page