Nano Archive

Dynamics of a thin viscoelastic film on an inclined plane

Uma, B. and Usha, R. (2006) Dynamics of a thin viscoelastic film on an inclined plane. International Journal of Engineering Science, 44 (20). pp. 1449-1481. ISSN 0020-7225

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL:


A theory for two-dimensional long and stationary waves of finite-amplitude on a thin viscoelastic fluid (weakly elastic) layer flowing down an inclined plane is investigated. A set of exact averaged equations for the viscoelastic film flow system is described and linearised stability analysis of the uniform flow is performed using normal-mode formulation and the critical condition for linear instability is obtained. The linearised instability for the permanent wave equation, consistent to the second order in epsilon (Porson) (View the MathML source, View the MathML source – unperturbed film thickness, L – characteristic length) is examined and the eigenvalue properties of the fixed points are classified in various parametric regimes. The possible domains of heteroclinic orbits and the regions of possible nonlinear bifurcations are analysed for different values of viscoelastic parameter Γ. Numerical integration of the permanent wave equation as a third order dynamical system is carried out. While wave transitions in real life involve complex spatio-temporal dynamics and many of these transitions lead to chaotic waves that are not stationary traveling waves, bifurcation of stationary traveling waves has been examined as a preliminary study of the more complex transitions. Different bifurcation scenarios leading to multiple hump solitary waves or leading to chaos are exhibited in the parametric space. The results are compared and contrasted with the Newtonian results. A summary of the bifurcation scenarios in the We versus cot θ/Re plane is obtained for different values of viscoelastic parameter Γ, when Re ≈ 13.33 and Re = 100

Item Type:Article
Subjects:Physical Science > Nanophysics
Physical Science > Nano objects
Material Science > Nanochemistry
Material Science > Nanostructured materials
Divisions:Faculty of Engineering, Science and Mathematics > School of Physics
Faculty of Engineering, Science and Mathematics > School of Chemistry
ID Code:6506
Deposited By:JNCASR
Deposited On:30 Jul 2009 07:11
Last Modified:30 Jul 2009 07:11

Repository Staff Only: item control page