Nano Archive

Electrical and magnetotransport properties of Nd-based manganite nanoparticles

Krishnamoorthy, C. and Sethupathi, K. and Sankaranarayanan, V. and Nirmala, R. and Malik, S. K. (2006) Electrical and magnetotransport properties of Nd-based manganite nanoparticles. Journal of Applied Physics, 99 (8). 08Q310. ISSN 0021-8979

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://scitation.aip.org/getabs/servlet/GetabsServ...

Abstract

Electrical and magnetotransport properties of nanocrystalline Nd0.7Sr0.3MnO3 sample having an average particle size of 45 nm have been studied. The resistivity in paramagnetic regime follows Mott's variable range hopping mechanism with an average hopping distance of about 21 Å. The observed magnetoresistivity (MR) has best been described by assuming that canted spins and defects are distributed all over the volume of the nanoparticle. The MR could be quantitatively best fitted to spin-dependent hopping model, together with phase-separation phenomenon. In this model, hopping barrier is proportional to the angle between the magnetic moments of the clusters. The hopping barrier height is minimum when the moments are parallel to each other and is maximum when the moments are randomly oriented. The fit yields a small cluster size of about two to three lattice constant dimensions in the paramagnetic (PM) phase and of about four to five lattice constants in the ferromagnetic (FM) phase. The results indicate that FM phase contributes to MR at low fields, whereas PM phase contributes at relatively high fields. ©2006 American Institute of Physics

Item Type:Article
Subjects:Physical Science > Nanophysics
Physical Science > Nano objects
Physical Science > Nanomagnetics
Material Science > Nanostructured materials
Material Science > Nanochemistry
Divisions:Faculty of Engineering, Science and Mathematics > School of Physics
Faculty of Engineering, Science and Mathematics > School of Chemistry
ID Code:6466
Deposited By:JNCASR
Deposited On:11 Aug 2009 07:20
Last Modified:11 Aug 2009 07:20

Repository Staff Only: item control page