Nano Archive

A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator

Feng, X. L. and White, C. J. and Hajimiri, A. and Roukes, M. L. (2008) A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. NATURE NANOTECHNOLOGY, 3 (6). pp. 342-346.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.nature.com/nnano/journal/v3/n6/abs/nnan...

Abstract

Sensors based on nanoelectromechanical systems vibrating at high and ultrahigh frequencies1 are capable of levels of performance that surpass those of larger sensors. Nanoelectromechanical devices have achieved unprecedented sensitivity in the detection of displacement2, mass3, force4 and charge5. To date, these milestones have been achieved with passive devices that require external periodic or impulsive stimuli to excite them into resonance. Here, we demonstrate an autonomous and self-sustaining nanoelectromechanical oscillator that generates continuous ultrahigh-frequency signals when powered by a steady d.c. source. The frequency-determining element in the oscillator is a 428 MHz nanoelectromechanical resonator that is embedded within a tunable electrical feedback network to generate active and stable self-oscillation. Our prototype nanoelectromechanical oscillator exhibits excellent frequency stability, linewidth narrowing and low phase noise performance. Such ultrahigh-frequency oscillators provide a comparatively simple means for implementing a wide variety of practical sensing applications. They also offer intriguing opportunities for nanomechanical frequency control, timing and synchronization.

Item Type:Article
Subjects:Physical Science > Nanoelectronics
ID Code:5938
Deposited By:IoN
Deposited On:11 Sep 2009 16:28
Last Modified:11 Sep 2009 16:28

Repository Staff Only: item control page