Nano Archive

Nanomagnetic actuation of receptor-mediated signal transduction

Mannix, Robert J. and Kumar, Sanjay and Cassiola, Flavia and Montoya-Zavala, Martin and Feinstein, Efraim and Prentiss, Mara and Ingber, Donald E. (2008) Nanomagnetic actuation of receptor-mediated signal transduction. NATURE NANOTECHNOLOGY, 3 (1). pp. 36-40.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.nature.com/nnano/journal/v3/n1/abs/nnan...

Abstract

Complex cell behaviours are triggered by chemical ligands that bind to membrane receptors and alter intracellular signal transduction. However, future biosensors, medical devices and other microtechnologies that incorporate living cells as system components will require actuation mechanisms that are much more rapid, robust, non-invasive and easily integrated with solid-state interfaces. Here we describe a magnetic nanotechnology that activates a biochemical signalling mechanism normally switched on by binding of multivalent chemical ligands. Superparamagnetic 30-nm beads, coated with monovalent ligands and bound to transmembrane receptors, magnetize when exposed to magnetic fields, and aggregate owing to bead–bead attraction in the plane of the membrane. Associated clustering of the bound receptors acts as a nanomagnetic cellular switch that directly transduces magnetic inputs into physiological cellular outputs, with rapid system responsiveness and non-invasive dynamic control. This technique may represent a new actuator mechanism for cell-based microtechnologies and man–machine interfaces.

Item Type:Article
Subjects:Biomedical Science > Nanobiotechnology
ID Code:5867
Deposited By:IoN
Deposited On:11 Sep 2009 15:40
Last Modified:11 Sep 2009 15:40

Repository Staff Only: item control page