Nano Archive

Fabrication of complex three-dimensional tissue architectures using a magnetic force-based cell patterning technique

Akiyama, Hirokazu and Ito, Akira and Kawabe, Yoshinori and Kamihira, Masamichi (2009) Fabrication of complex three-dimensional tissue architectures using a magnetic force-based cell patterning technique. Biomedical Microdevices, 11 (4). pp. 713-721.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.springerlink.com/content/b4648107332j75...

Abstract

We describe the fabrication of three-dimensional tissue constructs using a magnetic force-based tissue engineering technique, in which cellular organization is controlled by magnetic force. Target cells were labeled with magnetite cationic liposomes (MCLs) so that the MCL-labeled cells could be manipulated by applying a magnetic field. Line patterning of human umbilical vein endothelial cells (HUVECs) labeled with MCLs was successfully created on monolayer cells or skin tissues using a magnetic concentrator device. Multilayered cell sheets were also inducible on a culture surface by accumulating MCL-labeled cells under a uniform magnetic force. Based on these results, we attempted to construct a complex multilayered myoblast C2C12 cell sheet. Here, patterned HUVECs were embedded by alternating the processes of magnetic accumulation of C2C12 cells for cell layer formation and magnetic patterning of HUVECs on the cell layers. This technique may be applicable for the fabrication of complex tissue architectures required in tissue engineering.

Item Type:Article
Subjects:Biomedical Science > Nanoscale biological processes
Biomedical Science > Nanobiotechnology
ID Code:5863
Deposited By:IoN
Deposited On:29 Jul 2009 16:09
Last Modified:29 Jul 2009 16:09

Repository Staff Only: item control page