Nano Archive

Estimating the sequence complexity of a random oligonucleotide population by using in vitro thermal melting and Cot analyses

Kim, Jin-Woo and Carpenter, Dylan P. and Deaton, Russell (2005) Estimating the sequence complexity of a random oligonucleotide population by using in vitro thermal melting and Cot analyses. Nanomedicine: Nanotechnology, Biology and Medicine, 1 (3). 220 - 230.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.sciencedirect.com/science/article/B7MDB...

Abstract

Randomly generated oligonucleotide populations have a high potential to serve as pools for selecting non-cross-hybridizing sequences, which are useful for nanoscale self-assembly and biological and biomedical applications, as well as for DNA computing applications. In this study a nonlinear kinetic model was developed for the complexity estimation of large unknown polynucleotide populations and was experimentally verified. The model was implemented to estimate the sequence complexity of the random 20 base-pair population after in vitro renaturation experiments. The kinetic behaviors of the random 20mers were also evaluated with in vitro thermal melting experiments. This study represents a step in realizing the potential of random oligonucleotides for DNA computing and nanoscale self-assembly applications for biology and medicine.

Item Type:Article
Uncontrolled Keywords: Random oligonucleotides; Sequence complexity; Thermal melting and Cot analysis; Nano/biotechnology
Subjects:Material Science > Nanofabrication processes and tools
Biomedical Science > Nanobiotechnology
Biomedical Science > Nanomedicine
ID Code:5814
Deposited By:SPI
Deposited On:07 Jul 2009 17:18
Last Modified:07 Jul 2009 17:18

Repository Staff Only: item control page