Nano Archive

Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice

Zhang, Leyang and Hu, Yong and Jiang, Xiqun and Yang, Changzheng and Lu, Wei and Yang, Yong Hua (2004) Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. Journal of Controlled Release, 96 (1). 135 - 148.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.sciencedirect.com/science/article/B6T3D...

Abstract

Triblock copolymers of poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) (PCLLA-PEG-PCLLA) were synthesized by ring opening copolymerization of caprolactone and lactide in the presence of poly(ethylene glycol) (PEG). With such triblock copolymers, PCLLA-PEG-PCLLA nanoparticles entrapping 10-hydroxycamptothecin-10,20-diisobutyl dicarbonate (HCPT-1), a derivative of the antitumor drug 10-hydroxycamptothecin (HCPT), were prepared by nano-precipitation method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The investigations on drug loading, in vitro release and body distribution in mice after intravenous (i.v.) administration were also carried out. It is found that the obtained nanoparticles showed smooth surface and spherical shape with the controllable size in the range of 70–180 nm, and drug loading content varied from 3.3% to 7.0% depending on the copolymer composition and preparation conditions. The in vitro release behavior exhibited a sustaining release manner and was affected by particle size as well as copolymer composition. The results of body distribution study in mice show that the blood concentration of HCPT-1 could be maintained for a long period and the tissue distribution was influenced by the particle size to some extent. These results suggest that the PCLLA-PEG-PCLLA nanoparticles seem to be a promising delivery system for poorly soluble antitumor drugs or their derivatives.

Item Type:Article
Uncontrolled Keywords:Nanoparticles; Block copolymers; Drug delivery systems; Camptothecin
Subjects:Biomedical Science > Nanomedicine
ID Code:5762
Deposited By:SPI
Deposited On:24 Jul 2009 09:52
Last Modified:24 Jul 2009 09:52

Repository Staff Only: item control page