Nano Archive

Novel lipidated sorbitol-based molecular transporters for non-viral gene delivery

Higashi, Tomoko and Khalil, Ikramy A. and Maiti, Kaustabh K. and Lee, Woo Sirl and Akita, Hidetaka and Harashima, Hideyoshi and Chung, Sung-Kee (2009) Novel lipidated sorbitol-based molecular transporters for non-viral gene delivery. Journal of Controlled Release, 136 (2). 140 - 147.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL:


In this study, we investigated the possible use of novel lipidated sorbitol-based transporters as functional devices for the improvement of non-viral gene delivery. These transporters are composed of a sorbitol scaffold bearing 8 guanidine moieties that mimic the arginine residues of well-known cell-penetrating peptides. In addition, the transporters carry different lipid groups to aid DNA condensation and facilitate lipid vesicle-binding. We found that the transporters described in this study have the potential to function as plasmid DNA/siRNA-condensers and surface ligands for the enhancement of cellular uptake of lipid vesicles. Shorter lipid chains were found to be better for condensation, whereas longer chains were superior surface ligands. The differential activity of different cores might be explained by facilitated decondensation of cores prepared with transporters comprised of shorter lipid chains. However, we suggest that there is an optimum value of decondensation to achieve higher transfection activities. The proper use of the transporters presented in this study enabled us to prepare a highly efficient non-viral gene delivery system based on a core–shell structure, in which a condensed DNA core is encapsulated by a lipid envelope. A multifunctional envelope-type nano-device prepared with an optimal surface ligand favorably competes with commonly used transfection systems.

Item Type:Article
Uncontrolled Keywords:Sorbitol; Octaarginine; Guanidine; Condensation; Non-viral gene delivery; MEND
Subjects:Biomedical Science > Nanomedicine
ID Code:5660
Deposited By:SPI
Deposited On:04 Aug 2009 12:08
Last Modified:04 Aug 2009 12:08

Repository Staff Only: item control page