Nano Archive

One-pot synthesis of oleic acid-capped cadmium chalcogenides (CdE: E = Se, Te) nano-crystals

Khanna, P. K. and Srinivasa Rao, K. and Patil, K. R. and Singh, V. N. and Mehta, B. R. (2008) One-pot synthesis of oleic acid-capped cadmium chalcogenides (CdE: E = Se, Te) nano-crystals. Journal of Nanoparticle Research . ISSN 1388-0764 (Print) 1572-896X (Online)

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.springerlink.com/content/p527252505134u...

Abstract

Surface-capped CdSe and CdTe nano-crystals (NCs) have been synthesized using cadmium acetate, oleic acid and respective tri-octylphosphine chalcogenide (TOPE; E = Se/Te) in diphenyl ether (DPE). Well-dispersed CdSe particles showed two absorption bands at the region of 431–34 and 458–60 nm in optical absorption study. A band-edge emission resulted at 515 nm with an excitation energy of 400 nm, in its photoluminescence (PL) spectrum. Similarly, UV–visible absorption study of CdTe revealed an absorption band at <700 nm. The broadened X-ray diffraction (XRD) pattern showed that at higher reaction temperature cubic CdSe but hexagonal CdTe can be obtained with crystallite size of <10 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that agglomerated particles are of spherical nature. The inter-planar spacing in CdTe was measured to be 0.406 nm, a characteristic of (100) lattice plane in hexagonal CdTe. X-ray photoelectron spectroscopy (XPS) showed that CdSe NCs have better air stability stable than CdTe. Presence of organic moiety around the semiconductor particles was confirmed by infra-red (IR) spectroscopy.

Item Type:Article
Subjects:Physical Science > Nanophysics
Physical Science > Nano objects
Material Science > Nanochemistry
Material Science > Nanostructured materials
Divisions:Faculty of Engineering, Science and Mathematics > School of Physics
Faculty of Engineering, Science and Mathematics > School of Chemistry
ID Code:5039
Deposited By:JNCASR
Deposited On:27 May 2009 11:02
Last Modified:11 Aug 2009 16:46

Repository Staff Only: item control page