Nano Archive

Enhancing Solar Cell Efficiencies through 1-D Nanostructures

Yu, Kehan and Chen, Junhong (2009) Enhancing Solar Cell Efficiencies through 1-D Nanostructures. Nanoscale Research Letters, 4 (1). pp. 1-10. ISSN 1931-7573 (Print) 1556-276X (Online)

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL:


The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

Item Type:Article
Uncontrolled Keywords:Solar cells - Nanowires - Nanotubes - Nanorods - Quantum dots - Hybrid nanostructures
Subjects:Technology > Nanotechnology and environmental applications
Technology > Nanotechnology and energy applications
ID Code:3659
Deposited By:Lesley Tobin
Deposited On:19 Jan 2009 12:58
Last Modified:19 Jan 2009 12:58

Repository Staff Only: item control page