Nano Archive

Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes

Li, Zheng and Hulderman, Tracy and Salmen, Rebecca and Chapman, Rebecca and Leonard, Stephen S. and Young, Shih-Houng and Shvedova, Anna and Luster, Michael I. and Simeonova, Petia P. (2007) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. ENVIRONMENTAL HEALTH PERSPECTIVES, 115 (3). pp. 377-382.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL:


BACKGROUND: Engineered nanosized materials, such as single-wall carbon nanotubes (SWCNT), are emerging as technologically important in different industries. OBJECTIVE: The unique physical characteristics and the pulmonary toxicity of SWCNTs raised concerns that respiratory exposure to these materials may be associated with cardiovascular adverse effects. METHODS: In these studies we evaluated aortic mitochondrial alterations by oxidative stress assays, including quantitative polymerase chain reaction of mitochondrial (mt) DNA and plaque formation by morphometric analysis in mice exposed to SWCNTs. RESULTS: A single intrapharyngeal instillation of SWCNTs induced activation of heme oxygenase-1 (HO-1), a marker of oxidative insults, in lung, aorta, and heart tissue in HO-1 reporter transgenic mice. Furthermore, we found that C57BL/6 mice, exposed to SWCNT (10 and 40 mu g/mouse), developed aortic mtDNA damage at 7, 28, and 60 days after exposure. mtDNA damage was accompanied by changes in aortic mitochondrial glutathione and protein carbonyl levels. Because these modifications have been related to cardiovascular diseases, we evaluated whether repeated exposure to SWCNTs (20 mu g/mouse once every other week for 8 weeks) stimulates the progression of atherosclerosis in ApoE(-/-) transgenic mice. Although SWCNT exposure did not modify the lipid profiles of these mice, it resulted in accelerated plaque formation in ApoE(-/-) mice fed an atherogenic diet. Plaque areas in the aortas, measured by the en face method, and in the brachiocephalic arteries, measured histopathologically, were significantly increased in the SWCNT-treated mice. This response was accompanied by increased mtDNA damage but not inflammation. CONCLUSIONS: Taken together, the findings are of sufficient significance to warrant further studies to evaluate the systemic effects of SWCNT under workplace or environmental exposure paradigms.

Item Type:Article
Uncontrolled Keywords:atherosclerosis; inflammatory cytokines; mitochondrial DNA damage; nanomaterials; nanotoxicology; oxidative stress
Subjects:Physical Science > Nano objects
NanoSafety > Environment, health and safety aspects of nanotechnology
Biomedical Science > Nanomedicine
ID Code:3224
Deposited By:Anuj Seth
Deposited On:14 Jan 2009 14:24
Last Modified:20 Jan 2009 15:59

Repository Staff Only: item control page