Nano Archive

Thermal transport in MWCNT sheets and yarns

Aliev, Ali E. and Guthy, Csaba and Zhang, Mei and Fang, Shaoli and Zakhidov, Anvar A. and Fischer, John E. and Baughman, Ray H. (2007) Thermal transport in MWCNT sheets and yarns. CARBON, 45 (15). pp. 2880-2888.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL:


Laser flash and self-heating 3 omega techniques were employed to determine the anisotropic thermal conductivity and thermal diffusivity of a highly oriented, free-standing multiwalled carbon nanotube (MWCNT) sheet and a yarn drawn from a sidewall of the MWCNT forest grown by chemical-vapor deposition. Normalized to ideal high density structure the thermal conductivity and the thermal diffusivity along the alignment are 50 +/- 5 W/m K and 45 +/- 5 mm(2)/s, respectively, and are mostly limited by dangling terminals of bundles, intrinsic defects of individual nanotubes and phonon scattering within the bundles, which form the supporting matrix of the MWCNT sheet. The high degree of tube-tube overlap substantially decreases the electrical and thermal interconnection resistance, which usually dominates in randomly deposited mat-like nanotube assemblies. The extremely high surface area of the MWCNT sheet leads to excessive radial heat radiation that does not allow transferring the heat energy along the MWCNT sheet by means of phonons to distances >2 mm. On the other hand, the high surface area and negligible heat capacitance make it a perfect material for bolometric sensing (r = 38 V/W) and heat dissipation. (C) 2007 Elsevier Ltd. All rights reserved.

Item Type:Article
Subjects:Physical Science > Nano objects
Analytical Science > Nanotechnology for sensing and actuating
Material Science > Nanostructured materials
Material Science > Nanochemistry
ID Code:2944
Deposited By:Anuj Seth
Deposited On:12 Jan 2009 13:52
Last Modified:20 Jan 2009 12:09

Repository Staff Only: item control page