Nano Archive

Reconfigurable, braced, three-dimensional DNA nanostructures

Goodman, Russell P. and Heilemann, Mike and Doose, Soeren and Erben, Christoph M. and Kapanidis, Achillefs N. and Turberfield, Andrew J. (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. NATURE NANOTECHNOLOGY, 3 (2). pp. 93-96.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.nature.com/nnano/journal/v3/n2/abs/nnan...

Abstract

DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale(1). Although static structures may find applications in structural biology(2-4) and computer science 5, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement(6). DNA architectures can span three dimensions(4,7-10) and DNA devices are capable of movement(10-16), but active control of well-defined three-dimensional structures has not been achieved. We demonstrate the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals. Shape changes are confirmed by gel electrophoresis and by bulk and single-molecule Forster resonance energy transfer measurements. DNA tetrahedra are natural building blocks for three-dimensional construction 9; they may be synthesized rapidly with high yield of a single stereoisomer, and their triangulated architecture conveys structural stability. The introduction of shape-changing structural modules opens new avenues for the manipulation of matter on the nanometre scale.

Item Type:Article
Subjects:Biomedical Science > Nanobiotechnology
Biomedical Science > Nanomedicine
ID Code:2710
Deposited By:Farnush Anwar
Deposited On:09 Jan 2009 12:21
Last Modified:22 Jan 2009 15:53

Repository Staff Only: item control page