Nano Archive

Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites

Njagi, John and Andreescu, Silvana (2007) Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites. BIOSENSORS & BIOELECTRONICS, 23 (2). pp. 168-175.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.sciencedirect.com/science?_ob=ArticleUR...

Abstract

This work describes development and optimization of a generic method for the immobilization of enzymes in chemically synthesized gold polypyrrole (Au-PPy) nanocomposite and their application in amperometric biosensors. Three enzyme systems have been used as model examples: cytochrome c, glucose oxidase and polyphenol oxidase. The synthesis and deposition of the nanocomposite was first optimized onto a glassy carbon electrode (GCE) and then, the optimum procedure was used for enzyme immobilization and subsequent fabrication of glucose and phenol biosensors. The resulting nanostructured polymer strongly adheres to the surface of the GCE electrode, has uniform distribution and is very stable. The method has proved to be an effective way for stable enzyme attachment while the presence of gold nanoparticles provides enhanced electrochemical activity; it needs very small amounts of pyrrole and enzyme and the Au-PPy matrix avoids enzyme leaking. The preparation conditions, Michaelis-Menten kinetics and analytical performance characteristics of the two biosensors are discussed. Optimization of the experimental parameters was performed with regard to pyrrole concentration, enzyme amount, pH and operating potential. These biosensors resulted in rapid, simple, and accurate measurement of glucose and phenol with high sensitivities (1.089 mA/M glucose and 497.1 mA/M phenol), low detection limits (2 x 10(-6) M glucose and 3 x 10(-8) M phenol) and fast response times (less than 10 s). The biosensors showed an excellent operational stability (at least 100 assays) and reproducibility (R.S.D. of 1.36%). (C) 2007 Elsevier B.V. All rights reserved.

Item Type:Article
Uncontrolled Keywords:polypyrrole; nanocomposite; tyrosinase; cytochrome c; glucose oxidase; enzyme biosensors
Subjects:Analytical Science > Nanotechnology for sensing and actuating
Biomedical Science > Nanobiotechnology
Material Science > Bio materials
ID Code:2496
Deposited By:Farnush Anwar
Deposited On:23 Dec 2008 15:07
Last Modified:09 Jan 2009 15:25

Repository Staff Only: item control page