Nano Archive

Integrated, electrically contacted NAD(P)(+)-dependent enzyme - carbon nanotube electrodes for biosensors and biofuel cell applications

Yan, Yi-Ming and Yehezkeli, Omer and Willner, Itamar (2007) Integrated, electrically contacted NAD(P)(+)-dependent enzyme - carbon nanotube electrodes for biosensors and biofuel cell applications. CHEMISTRY-A EUROPEAN JOURNAL, 13 (36). pp. 10168-10175.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Abstract

Integrated, electrically contacted P-nicotinamide adenine dinucleotide- (NAD(+)) or beta-nicotinamide adenine dinucleotide phosphate- (NADP(+)) dependent enzyme electrodes were prepared on single-walled carbon nanotube (SWCNT) supports. The SWCNTs were functionalized with Nile Blue (1), and the cofactors NADP(+) and NAD(+) were linked to I through a phenyl boronic acid ligand. The affinity complexes of glucose dehydrogenase (GDH) with the NADP+ cofactor or alcohol dehydrogenase (AlcDH) with the NAD+ cofactor were crosslinked with glutaric dialdehyde and the biomolecule-functionalized SWCNT materials were deposited on glassy carbon electrodes. The integrated enzyme electrodes revealed bioelectrocatalytic activities, and they acted as amperometric electrodes for the analysis of glucose or ethanol. The bioelectrocatalytic response of the systems originated from the biocatalyzed oxidation of the respective substrates by the enzyme with the concomitant generation of NAD(P)H cofactors. The electrocatalytically mediated oxidation of NAD(P)H by 1 led to amperometric responses in the system. Similarly, an electrically contacted bilirubin oxidase (BOD) - SWCNT electrode was prepared by the deposition of BOD onto the SWCNTs and the subsequent cross-linking of the BOD units using glutaric dialdehyde. The BOD - SWCNT electrode revealed bioelectrocatalytic functions for the reduction of O-2 to H2O. The different electrically contacted SWCNT-based enzyme electrodes were used to construct biofuel cell elements. The electrically contacted GDH - SWCNT electrode was used as the anode for the oxidation of the glucose fuel in conjunction with the BOD - SWCNT electrode in the presence of 02, which acted as an oxidizer in the system. The power output of the cell was 23 mu W cm(-2). Similarly, the AlcDH - SWCNT electrode was used as the anode for the oxidation of ethanol, which was acting as the fuel, with the BOD - SWCNT electrode as the cathode for the reduction Of O-2. The power output of the system was 48 mu W cm(-2).

Item Type:Article
Uncontrolled Keywords:biofuel cells; biosensors; catalysis; cofactors; nanotubes
Subjects:Analytical Science > Nanotechnology for sensing and actuating
Physical Science > Nanoelectronics
Technology > Nanotechnology and energy applications
ID Code:232
Deposited By:Lesley Tobin
Deposited On:18 Dec 2008 14:53
Last Modified:18 Dec 2008 14:53

Repository Staff Only: item control page