Nano Archive

Low-energy vibrational excitations in carbon nanotubes studied by heat capacity

Lasjaunias, J C and Biljakovic, K and Monceau, P and Sauvajol, J L (2003) Low-energy vibrational excitations in carbon nanotubes studied by heat capacity. Nanotechnology, 14 (9). pp. 998-1003.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://stacks.iop.org/0957-4484/14/998

Abstract

We present low-temperature heat capacity measurements performed on two different kinds of single-walled carbon nanotube bundles which essentially differ in their mean number of tubes (NT) per bundle. For temperatures below a few kelvin, the vibrational heat capacity can be analysed as the sum of two contributions. The first one is a regular T3 phononic one, characteristic of the three-dimensional (3D) elastic character of the bundle for long-wavelength phonons. A crossover to a lower effective dimensionality appears at a few kelvin. From the 3D contribution, we estimate a mean sound velocity, and hence a mean shear modulus of the bundle. The difference in amplitude of the acoustic term and in the crossover temperature between the two samples is ascribed to the different bundle topology (i.e. NT). The second contribution, of similar amplitude in both kinds of samples, shows a peculiar power law Ta variation (a <span class='mathrm'>&lt;</span> 1) indicative of localized excitations, very probably due to intrinsic structural defects of the nanotubes.

Item Type:Article
ID Code:1562
Deposited By:Prof. Alexey Ivanov
Deposited On:16 Mar 2009 10:40
Last Modified:20 Mar 2009 08:58

Repository Staff Only: item control page