Nano Archive

Photoinduced formation of polythiophene/TiOP2 nanohybrid heterojunction films for solar cell applications

Otsuka, Yasuhide and Okamoto, Yuko and Akiyama, Hitomi Y. and Umekita, Kazuya and Tachibana, Yasuhiro and Kuwabata, Susumu (2008) Photoinduced formation of polythiophene/TiOP2 nanohybrid heterojunction films for solar cell applications. JOURNAL OF PHYSICAL CHEMISTRY C, 112 (12). pp. 4767-4775.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://dx.doi.org/10.1021/jp7099064

Abstract

Formation of nanostructured polythiophene/TiO2 heterojunction films, using photoinduced polymerization of thiophene inside TiO2 nanopores, was investigated. The resultant film possesses nanohybridization and electronic connection within the TiO2 nanoporous domain. Photopolymerization proceeded in three stages: (i) photoexcitation of bithiophene covalently attached to the TiO2 surface, (ii) an electron injection reaction from the surface attached thiophene to the TiO2, and (iii) an electron transfer from a thiophene reactant in an electrolyte to the surface-attached bithiophene. Initial rapid photopolymerization and subsequent slow polymer growth were explained by analysis of a series of experiments, e.g., with respect to light irradiation time, applied bias, electrolyte types, thiophene reactant type, and their morphology. Electrochemical measurements for the bithiophene adsorbed on TiO2 revealed a wide distribution of redox potentials. This was explained by influence of the local electric field on the TiO2 surface in addition to strong interaction between the surface-bound bithiophene and the TiO2. The nanohybrid film was applied to a sensitized-type photoelectrochemical solar cell, substantiating direct application of the nanohybrid film to electronic devices. The solar cell performance was closely associated with the interfacial structure in the nanohybrid film and the photopolymerization degree.

Item Type:Article
Subjects:Material Science > Nanofabrication processes and tools
Material Science > Nanostructured materials
Material Science > Nanochemistry
ID Code:1364
Deposited By:Anuj Seth
Deposited On:09 Dec 2008 12:45
Last Modified:16 Jan 2009 13:47

Repository Staff Only: item control page