Nano Archive

Sensitivity of carbon nanotube transistors to a charged dielectric coating

Pennington, Gary and Ervin, Matthew H. and Wickenden, Alma E. (2008) Sensitivity of carbon nanotube transistors to a charged dielectric coating. IEEE SENSORS JOURNAL, 8 (5-6). pp. 1028-1035.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL:


This paper investigates the electronic properties of single-walled carbon nanotube field-effect transistors (SWCNT-FETs) in which the SWCNT element is coated with a charged dielectric. The presence of remote charge on the surface of the dielectric is considered to effect carrier transport in the nanotube as a result of both carrier-scattering and gate screening. Nanotube device characteristics are simulated using the multisubband Boltzmann transport method incorporating scattering from both phonons and remote charges. This allows assessment of the sensitivity of a nanotube FET to the presence of a charged dielectric coating during room temperature operation. Results show remote charge scattering affects the diameter (d) dependence of the peak conductance and peak field-effect mobility of carbon nanotube devices. Under phonon-limited transport conditions, these peak values increase as similar to d and similar to d(2), respectively. When remote charge scattering is significant, peak values cease to vary with diameter once a critical diameter reached. Charge scattering is found to particularly degrade device current at gate voltages that allow carriers scattering into or out of a subband minimum. Furthermore, simulations show that intersubband scattering resulting from asymmetry in the circumferential remote charge density becomes increasingly important as the nanotube length decreases. The authors propose that remote charge scattering effects may be applicable in sensing devices allowing for the identification of the charge on a functionalized CNT coating.

Item Type:Article
Uncontrolled Keywords:carbon nanotubes; phonon scattering; remote charge scattering; sensor devices
Subjects:Physical Science > Nanophysics
Physical Science > Nano objects
Material Science > Nanostructured materials
Analytical Science > Beam methods
ID Code:1210
Deposited By:Anuj Seth
Deposited On:16 Dec 2008 13:50
Last Modified:20 Jan 2009 10:21

Repository Staff Only: item control page