Nano Archive

Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles

Graham, Duncan and Thompson, David G. and Smith, W. Ewen and Faulds, Karen (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. NATURE NANOTECHNOLOGY, 3 (9). pp. 548-551.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.nature.com/nnano/journal/v3/n9/abs/nnan...

Abstract

Enhanced Raman scattering from metal surfaces has been investigated for over 30 years(1). Silver surfaces are known to produce a large effect, and this can be maximized by producing a roughened surface, which can be achieved by the aggregation of silver nanoparticles(2-4). However, an approach to control this aggregation, in particular through the interaction of biological molecules such as DNA, has not been reported. Here we show the selective turning on of the surface enhanced resonance Raman scattering(5) effect on dye-coded, DNA-functionalized, silver nanoparticles through a target-dependent, sequence-specific DNA hybridization assembly that exploits the electromagnetic enhancement mechanism for the scattering. Dye-coded nanoparticles that do not undergo hybridization experience no enhancement and hence do not give surface enhanced resonance Raman scattering. This is due to the massive difference in enhancement from nanoparticle assemblies compared with individual nanoparticles. The electromagnetic enhancement is the dominant effect and, coupled with an understanding of the surface chemistry, allows surface enhanced resonance Raman scattering nanosensors to be designed based on a natural biological recognition process.

Item Type:Article
Subjects:Physical Science > Nano objects
Analytical Science > Nanotechnology for sensing and actuating
Biomedical Science > Nanobiotechnology
Material Science > Nanochemistry
Analytical Science > Beam methods
ID Code:1207
Deposited By:Anuj Seth
Deposited On:16 Dec 2008 13:58
Last Modified:20 Jan 2009 10:11

Repository Staff Only: item control page