Nano Archive

Numerical Characterization and Optimization of the Microfluidics for Nanowire Biosensors

Kim, Dong Rip and Zheng, Xiaolin (2008) Numerical Characterization and Optimization of the Microfluidics for Nanowire Biosensors. NANO LETTERS, 8 (10). pp. 3233-3237.

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://dx.doi.org/10.1021/nl801559m

Abstract

The present study aims to enhance the analyte transport to the surface of nanowires (NWs) through optimizing the sensing configuration and the flow patterns inside the microfluidic channel, and hence to reduce the response time of NW biosensors. Specifically, numerical simulations were carried out to quantitatively investigate the effects of the fundamental surface reaction, convection, and diffusion processes on the sensing performance. Although speeding up all these processes will reduce the sensing response time, enhancing the diffusional transport was found to be most effective. Moreover, the response time of NW biosensors is inversely proportional to the local concentration of the analyte in the vicinity of the NWs, which suggests that the sensing response time can be significantly reduced by replenishing the local analyte rapidly. Therefore, the following three optimization strategies were proposed and their effects on the time response of NWs were characterized systematically: device substrate passivation, microfluidic channel modification, and suspending NWs. The combination of these three optimization methods was demonstrated to be able to reduce the response time of NW biosensors by more than 1 order of magnitude.

Item Type:Article
Subjects:Analytical Science > Nanotechnology for sensing and actuating
Biomedical Science > Nanobiotechnology
Material Science > Nanostructured materials
ID Code:1190
Deposited By:Anuj Seth
Deposited On:16 Dec 2008 14:57
Last Modified:19 Jan 2009 12:14

Repository Staff Only: item control page