Nano Archive

Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays

Huang, Song-Bin and Wu, Min-Hsien and Wang, Shih-Siou and Lee, Gwo-Bin (2011) Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays. BIOMEDICAL MICRODEVICES, 13 (3). pp. 415-430. ISSN 1387-2176 (Print) 1572-8781 (Online)

Full text is not hosted in this archive but may be available via the Official URL, or by requesting a copy from the corresponding author.

Official URL: http://www.springerlink.com/content/a628476l403853...

Abstract

This study reports a microfluidic cell culture chip consisting of 48 microbioreactors for high-throughput perfusion 3-dimensional (3-D) cell culture-based assays. Its advantages include the capability for multiplexed and backflow-free medium delivery, and both efficient and high-throughput micro-scale, 3-D cell culture construct loading. In this work, the microfluidic cell culture chip is fabricated using two major processes, specifically, a computer-numerical-controlled (CNC) mold machining process and a polydimethylsiloxane (PDMS) replication process. The chip is composed of micropumps, microbioreactors, connecting microchannels and a cell/agarose scaffold loading mechanism. The performance of the new pneumatic micropumps and the cell/agarose scaffold loading mechanism has been experimentally evaluated. The experimental results show that this proposed multiplexed medium-pumping design is able to provide a uniform pumping rate ranging from 1.5 to 298.3 μl hr−1 without any fluid backflow and the resultant medium contamination. In addition, the simple cell/agarose loading method has been proven to be able to load the 3-D cell culture construct uniformly and efficiently in all 48 microbioreactors investigated. Furthermore, a micro-scale, perfusion, 3-D cell culture-based assay has been successfully demonstrated using this proposed cell culture chip. The experimental results are also compared to a similar evaluation using a conventional static 3-D cell culture with a larger scale culture. It is concluded that the choice of a cell culture format can influence assay results. As a whole, because of the inherent advantages of a miniaturized perfusion 3-D cell culture assay, the cell culture chip not only can provide a stable, well-defined and more biologically-meaningful culture environment, but it also features a low consumption of research resources. Moreover, due to the integrated medium pumping mechanism and the simple cell/agarose loading method, this chip is economical and time efficient. All of these traits are particularly useful for high-precision and high-throughput 3-D cell culture-based assays.

Item Type:Article
Uncontrolled Keywords:Microfluidics – Micropumps – Microbioreactors – Perfusion cell culture – 3-D cell culture
Subjects:Biomedical Science > Nanobiotechnology
Biomedical Science > Nanomedicine
Divisions:Faculty of Engineering, Science and Mathematics > School of Engineering Sciences
ID Code:10715
Deposited By:SPI
Deposited On:08 Jun 2011 11:08
Last Modified:08 Jun 2011 11:08

Repository Staff Only: item control page