Nano Archive

Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines

Liu, Yingxun and Chen, Zhongping and Wang, Jinke (2011) Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines. Journal of Nanoparticle Research, 13 (1). pp. 199-212.

[img]
Preview
PDF
981Kb

Official URL: http://www.springerlink.com/content/r73302516p2044...

Abstract

This article systematically evaluated the biocompatibility of multiple mammalian cell lines to 11-nm DMSA-coated Fe3O4 magnetic nanoparticles (MNPs). Cells including RAW264.7, THP-1, Hepa1-6, HepG2, HL-7702, and HeLa were incubated with six different concentrations (0, 20, 30, 40, 50, and 100 μg/mL) of MNPs for 48 h, and then the cell labeling, iron loading, cell viability, apoptosis, cycle, and oxidative stress were all quantitatively evaluated. The results revealed that all the cells were effectively labeled by the nanoparticles; however, the iron loading of RAW264.7 was significantly higher than that of other cells at any dose. The proliferations of all the cells were not significantly suppressed by MNPs at the studied dose except HepG2 that was exposed to 100 μg/mL MNPs. The investigation of oxidative stress demonstrated that the levels of total superoxide dismutase and xanthine oxidase had no significant changes in all the cells treated by all the doses of MNPs, while the levels of malonyldialdehyde activity of MNP-treated cells significantly increased. The nanoparticles did not produce any significant effect on cell cycles at any of the doses, but resulted in significant apoptosis of THP-1 and HepG2 cells at the highest concentration of 100 μg/mL. At a concentration of 30 μg/mL which was used in human studies with an intravascular nanoparticle imaging agent (Combidex), the nanoparticles efficiently labeled all the cells studied, but did not produce any significant influence on their viability, oxidative stress, and apoptosis and cycle. Therefore, the nanoparticles were concluded with better biocompatibility, which provided some useful information for its clinical applications.

Item Type:Article
Subjects:Physical Science > Nanophysics
Physical Science > Nano objects
Material Science > Nanochemistry
Material Science > Nanostructured materials
Divisions:Faculty of Engineering, Science and Mathematics > School of Physics
Faculty of Engineering, Science and Mathematics > School of Chemistry
ID Code:10566
Deposited By:JNCASR
Deposited On:19 Mar 2011 06:20
Last Modified:19 Mar 2011 06:20

Repository Staff Only: item control page